首页> 美国卫生研究院文献>American Journal of Epidemiology >Covariate Selection in High-Dimensional Propensity Score Analyses of Treatment Effects in Small Samples
【2h】

Covariate Selection in High-Dimensional Propensity Score Analyses of Treatment Effects in Small Samples

机译:高维度倾向得分分析中小样本治疗效果的协变量选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To reduce bias by residual confounding in nonrandomized database studies, the high-dimensional propensity score (hd-PS) algorithm selects and adjusts for previously unmeasured confounders. The authors evaluated whether hd-PS maintains its capabilities in small cohorts that have few exposed patients or few outcome events. In 4 North American pharmacoepidemiologic cohort studies between 1995 and 2005, the authors repeatedly sampled the data to yield increasingly smaller cohorts. They identified potential confounders in each sample and estimated both an hd-PS that included 0–500 covariates and treatment effects adjusted by decile of hd-PS. For sensitivity analyses, they altered the variable selection process to use zero-cell correction and, separately, to use only the variables’ exposure association. With >50 exposed patients with an outcome event, hd-PS-adjusted point estimates in the small cohorts were similar to the full-cohort values. With 25–50 exposed events, both sensitivity analyses yielded estimates closer to those obtained in the full data set. Point estimates generally did not change as compared with the full data set when selecting >300 covariates for the hd-PS. In these data, using zero-cell correction or exposure-based covariate selection allowed hd-PS to function robustly with few events. hd-PS is a flexible analytical tool for nonrandomized research across a range of study sizes and event frequencies.
机译:为了减少非随机数据库研究中残留混杂造成的偏见,高维倾向评分(hd-PS)算法选择并调整了先前无法测量的混杂因素。作者评估了hd-PS是否在很少有暴露患者或很少发生预后事件的小型队列中保持其功能。在1995年至2005年间进行的4项北美药物流行病学队列研究中,作者反复采样数据以得出越来越小的队列。他们在每个样本中确定了潜在的混杂因素,并估计了包含0-500个协变量的hd-PS以及通过hd-PS的十分位数调整的治疗效果。为了进行敏感性分析,他们更改了变量选择过程,以使用零像元校正,并分别使用变量的暴露关联。对于> 50名暴露于预后事件的患者,小队列中的hd-PS调整后的点估计与全队列值相似。对于25–50个暴露事件,两种敏感性分析得出的估计值都接近完整数据集中的估计值。当为hd-PS选择> 300个协变量时,点估计与完整数据集相比通常不会发生变化。在这些数据中,使用零像元校正或基于曝光的协变量选择使hd-PS能够在很少事件的情况下稳定运行。 hd-PS是一种灵活的分析工具,适用于各种研究规模和事件频率的非随机研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号