首页> 美国卫生研究院文献>Stem Cell Reports >A Double Fail-Safe Approach to Prevent Tumorigenesis and Select Pancreatic β Cells from Human Embryonic Stem Cells
【2h】

A Double Fail-Safe Approach to Prevent Tumorigenesis and Select Pancreatic β Cells from Human Embryonic Stem Cells

机译:防止肿瘤发生和从人胚胎干细胞中选择胰腺β细胞的双重失效保护方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionClinical trials have already been initiated for the treatment of type 1 diabetes with hESC-derived β cell progenitors (), and newer approaches with functional β-like cells are lining up (, ). However, for all their promise, hESCs are not without limitations. While the proportion of β-like cells obtained is relatively high (30%–40%) (, ), a significant percentage of undefined cell types are also generated (, ). Most importantly, non-differentiated escapees may produce teratomas upon transplantation (). Although recent protocol refinements have reduced this risk, the foreseeable implementation of hESC-based therapies in thousands of patients calls for caution. One single case of hESC-derived tumors may set the field back for years.To address these concerns, we set out to engineer hESC lines with control mechanisms allowing for the selective ablation of both tumorigenic cells and cells differentiated along undesirable fates. We hypothesized that constructs of our invention would impart such selectivity when stably integrated within the host genome. Given its clinical immediacy, we decided to focus on an insulin-producing cell differentiation model, even though our system could be customized for any cell type. In such a model, cells are engineered with two suicide gene cassettes. One of them (herpes simplex virus thymidine kinase, or HSV-TK) is activated only in cells that resume/continue tumorigenic proliferation. The second (nitroreductase [NTR]) is active in all cells unless they express insulin, in which case it is permanently excised out of the genome. HSV-TK and NTR impart sensitivity to ganciclovir (GCV) () and CB1954 (), respectively, which have been tested clinically (, ). In our design, the NTR cassette, flanked by loxP sites, is eliminated upon expression of Cre by the human insulin promoter (). Therefore, insulin-expressing cells are rendered insensitive to CB1954. HSV-TK is driven by the telomerase promoter, which is active only in undifferentiated cell types (). This makes proliferating cells sensitive to GCV. Thus, our method provides a double fail-safe control such that (1) only insulin+, non-proliferating cells survive selection; (2) cells that may de-differentiate after transplantation () (and in which NTR was lost with the onset of insulin expression) may still be selectively killed in vivo by GCV, leaving the rest of the graft intact; and (3) undifferentiated cells are sensitive to two pro-drugs, making it less likely for tumorigenic cells to survive in case one single drug was insufficient to destroy 100% of them, or if they became resistant to one pro-drug due to spontaneous mutations of the relevant suicide gene (href="#bib19" rid="bib19" class=" bibr popnode">Kotini et al., 2016). No other method reported thus far offers the same degree of safety and specificity, as conventional suicide gene-based strategies bring about the destruction of the entire graft or do not enrich for the cells of therapeutic interest. Our results offer proof-of-principle of this approach and open the door to the subsequent targeting of these constructs to specific “safe harbor” locations within the genome of clinical-grade hESCs.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介已经开始用hESC衍生的β受体治疗1型糖尿病的临床试验细胞祖细胞()和使用功能性β样细胞的新方法正在排队(,)。然而,尽管有其所有的希望,hESC也不是没有局限性。尽管获得的β样细胞的比例相对较高(30%–40%)(,),但仍会产生大量未定义的细胞类型(,)。最重要的是,未分化的逃逸者可能在移植后产生畸胎瘤。尽管最近的方案改进降低了这种风险,但可预见的在数千名患者中实施基于hESC的疗法仍需谨慎。一例hESC来源的肿瘤可能使这一领域退后多年。为解决这些问题,我们着手设计具有控制机制的hESC系,以选择性消融致瘤细胞和沿不良命运分化的细胞。我们假设,当本发明的构建体稳定整合在宿主基因组中时,其将赋予这种选择性。考虑到它的临床直接性,即使我们的系统可以针对任何细胞类型进行定制,我们还是决定将重点放在产生胰岛素的细胞分化模型上。在这样的模型中,用两个自杀基因盒改造了细胞。其中之一(单纯疱疹病毒胸苷激酶或HSV-TK)仅在恢复/继续致瘤性增殖的细胞中被激活。除非它们表达胰岛素,否则第二种(硝基还原酶[NTR])在所有细胞中都有活性,在这种情况下,它会永久地从基因组中切除。 HSV-TK和NTR分别对更昔洛韦(GCV)()和CB1954()赋予了敏感性,这已通过临床测试(,)。在我们的设计中,两侧的loxP位点的NTR盒在人胰岛素启动子表达Cre时就被消除了。因此,使表达胰岛素的细胞对CB1954不敏感。 HSV-TK由端粒酶启动子驱动,端粒酶启动子仅在未分化的细胞类型中才有活性。这使得增殖细胞对GCV敏感。因此,我们的方法提供了双重故障安全控制,使得(1)仅胰岛素 + 非增殖细胞在选择中存活; (2)移植后可能去分化的细胞()(其中NTR随胰岛素表达的开始而丢失)仍可通过GCV在体内被杀死,其余的移植物完好无损; (3)未分化的细胞对两种前药敏感,如果一种药物不足以破坏100%或由于自发而对一种前药产生耐药性,致瘤细胞存活的可能性就会降低相关自杀基因的突变(href="#bib19" rid="bib19" class=" bibr popnode"> Kotini等人,2016 )。迄今为止,尚无其他报道的方法可提供相同程度的安全性和特异性,因为传统的基于自杀基因的策略导致整个移植物的破坏或无法富集治疗用细胞。我们的结果提供了这种方法的原理证明,并为随后将这些构建体靶向临床级hESC基因组中特定的“安全港”位置打开了大门。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号