首页> 美国卫生研究院文献>The Journal of Neuroscience >Postsynaptic Spiking Homeostatically Induces Cell-Autonomous Regulation of Inhibitory Inputs via Retrograde Signaling
【2h】

Postsynaptic Spiking Homeostatically Induces Cell-Autonomous Regulation of Inhibitory Inputs via Retrograde Signaling

机译:突触后突触稳态通过逆行信号诱导抑制性输入的细胞自主调节。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Developing neural circuits face the dual challenge of growing in an activity-induced fashion and maintaining stability through homeostatic mechanisms. Compared to our understanding of homeostatic regulation of excitatory synapses, relatively little is known about the mechanism mediating homeostatic plasticity of inhibitory synapses, especially that following activity elevation. Here, we found that elevating neuronal activity in cultured hippocampal neurons for 4 h significantly increased the frequency and amplitude of mIPSCs, before detectable change at excitatory synapses. Consistently, we observed increases in presynaptic and postsynaptic proteins of GABAergic synapses, including GAD65, vGAT, and GABAARα1. By suppressing activity-induced increase of neuronal firing with expression of the inward rectifier potassium channel Kir2.1 in individual neurons, we showed that elevation in postsynaptic spiking activity is required for activity-dependent increase in the frequency and amplitude of mIPSCs. Importantly, directly elevating spiking in individual postsynaptic neurons, by capsaicin activation of overexpressed TRPV1 channels, was sufficient to induce increased mIPSC amplitude and frequency, mimicking the effect of elevated neuronal activity. Downregulating BDNF expression in the postsynaptic neuron or its extracellular scavenging prevented activity-induced increase in mIPSC frequency, consistent with a role of BDNF-dependent retrograde signaling in this process. Finally, elevating activity in vivo by kainate injection increased both mIPSC amplitude and frequency in CA1 pyramidal neurons. Thus, spiking-induced, cell-autonomous upregulation of GABAergic synaptic inputs, through retrograde BDNF signaling, represents an early adaptive response of neural circuits to elevated network activity.
机译:发展中的神经回路面临着以活动诱发方式生长和通过稳态机制维持稳定性的双重挑战。与我们对兴奋性突触的稳态调节的理解相比,关于介导抑制性突触的稳态可塑性的机制,尤其是在活动增加后的机制了解得很少。在这里,我们发现,在兴奋性突触发生可检测到的变化之前,培养的海马神经元持续4 h的神经元活性显着增加了mIPSC的频率和幅度。一致地,我们观察到GABA能突触包括GAD65,vGAT和GABAARα1的突触前和突触后蛋白增加。通过抑制活动诱导的神经元放电与个别神经元的向内整流钾通道Kir2.1的表达,我们表明,突触后突触活动的升高是mIPSCs频率和幅度的活动依赖性增加所必需的。重要的是,通过辣椒素激活过表达的TRPV1通道直接增强单个突触后神经元的突增,足以诱导mIPSC振幅和频率增加,从而模仿了神经元活动增强的效果。下调突触后神经元中的BDNF表达或其细胞外清除阻止了活动诱导的mIPSC频率增加,这与BDNF依赖性逆行信号在此过程中的作用一致。最后,通过海藻酸盐注射提高体内活性可增加CA1锥体神经元的mIPSC振幅和频率。因此,通过逆行BDNF信号,尖峰诱导的GABA能突触输入的细胞自主上调代表了神经回路对网络活动升高的早期适应性反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号