首页> 外文学位 >Endogenous cannabinoids mediate retrograde signaling at inhibitory synapses of the neocortex.
【24h】

Endogenous cannabinoids mediate retrograde signaling at inhibitory synapses of the neocortex.

机译:内源性大麻素在新皮层的抑制突触中介导逆行信号。

获取原文
获取原文并翻译 | 示例

摘要

The pyramidal neurons are the most numerous neuronal elements in the cerebral cortex and their axons comprise the major source of efferent cortical fibers. The activity of pyramidal neurons reflects the integration of synaptic inputs that arise from intrinsic and extrinsic sources. Although few in number, inhibitory GABAergic inputs to pyramidal neurons are critical for regulating pyramidal neuron activity. The GABAergic interneurons are diverse in their morphology and synaptic connectivity, and they innervate specific domains of pyramidal neurons to control action potential timing, the efficacy and integration of excitatory inputs, and synchronous network activity. Some GABAergic interneurons express the type-1 cannabinoid receptor (CB1R) on their synaptic terminals and pyramidal neurons are capable of producing and metabolizing endogenous ligands that activate CB1R (i.e., endocannabinoids). Therefore, we tested the hypothesis that endocannabinoids regulate GABAergic inhibition in the cortex by acting as retrograde signaling molecules between pyramidal neurons and a subpopulation of interneurons.; Using whole-cell patch clamp recordings from pyramidal neurons in slices of mouse cortex, we show that these cells can suppress afferent somatic inhibition via retrograde synaptic signaling. The retrograde signaling is initiated by pyramidal neuron depolarization and subsequent Ca2+ influx, and is expressed as a reduction in the probability of GABA release from the synaptic terminals of interneurons. This depolarization-induced suppression of inhibition, or DSI, is abolished by CB1R antagonists and occluded by a CB1R agonist, indicating that an endocannabinoid is the retrograde messenger. Furthermore, the subpopulation of interneurons involved in cortical DSI are excited by cholinergic activation and their axons selectively target the perisomatic membrane compartment of pyramidal neurons.; The specificity of endocannabinoid-mediated DSI suggests that the regulation of somatic inhibition is an important feature of cortical circuits. We believe that endocannabinoid signaling in the neocortex is involved in several aspects of synaptic integration and plasticity, and that DSI provides a mechanism enabling postsynaptic neurons to regulate afferent inhibition in an activity-dependent manner. Moreover, the similarity between cortical and hippocampal DSI indicates that this form of signaling is a conserved and universal feature of these complex brain systems.
机译:锥体神经元是大脑皮层中数量最多的神经元,其轴突构成了皮质纤维的主要来源。锥体神经元的活动反映了来自内在和外在来源的突触输入的整合。尽管数量很少,但抑制锥体神经元的GABA能输入对于调节锥体神经元的活性至关重要。 GABA能神经元的形态和突触连通性各不相同,它们神经支配锥体神经元的特定区域,以控制动作电位的时机,兴奋性输入的功效和整合以及同步网络活动。一些GABA能神经元在其突触末端表达1型大麻素受体(CB1R),并且锥体神经元能够产生和代谢激活CB1R的内源性配体(即内源性大麻素)。因此,我们测试了以下假设:内源性大麻素通过充当锥体神经元和中间神经元亚群之间的逆行信号分子来调节皮质中的GABA能抑制。使用小鼠皮质切片中锥体神经元的全细胞膜片钳记录,我们显示这些细胞可以通过逆行突触信号抑制传入体抑制。逆行信号是由锥体神经元去极化和随后的Ca 2 + 涌入而引发的,并表示为GABA从中间神经元突触末端释放的可能性降低。 CB1R拮抗剂取消了这种去极化诱导的抑制作用,即DSI,而CB1R激动剂将其抑制,表明内源性大麻素是逆行信使。此外,参与胆碱能激活的皮层DSI中枢神经元的亚群被激活,其轴突选择性地靶向锥体神经元的透膜隔室。内源性大麻素介导的DSI的特异性表明,体细胞抑制的调节是皮层回路的重要特征。我们相信,新皮质中的内源性大麻素信号传导参与突触整合和可塑性的多个方面,并且DSI提供了一种机制,使突触后神经元能够以活动依赖的方式调节传入抑制。此外,皮层和海马DSI之间的相似性表明,这种信号传递形式是这些复杂脑系统的保守和普遍特征。

著录项

  • 作者

    Trettel, Joseph D., Jr.;

  • 作者单位

    The University of Connecticut.;

  • 授予单位 The University of Connecticut.;
  • 学科 Biology Neuroscience.; Biology Animal Physiology.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;生理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号