首页> 美国卫生研究院文献>Biophysical Journal >Geometric and Material Determinants of Patterning Efficiency by Dielectrophoresis
【2h】

Geometric and Material Determinants of Patterning Efficiency by Dielectrophoresis

机译:介电电泳图形效率的几何和材料决定因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dielectrophoretic (DEP) forces have been used extensively to manipulate, separate, and localize biological cells and bioparticles via high-gradient electric fields. However, minimization of DEP exposure time is desirable, because of possible untoward effects on cell behavior. Toward this goal, this article investigates the geometric and material determinants of particle patterning kinetics and efficiency. In particular, the time required to achieve a steady-state pattern is theoretically modeled and experimentally validated for a planar, interdigitated bar electrode array energized in a standing-wave configuration. This measure of patterning efficiency is calculated from an improved Fourier series solution of DEP force, in which realistic boundary conditions and a finite chamber height are imposed to reflect typical microfluidic applications. The chamber height, electrode spacing, and fluid viscosity and conductivity are parameters that profoundly affect patterning efficiency, and optimization can reduce electric field exposure by orders of magnitude. Modeling strategies are generalizable to arbitrary electrode design as well as to conditions where DEP force may not act alone to cause particle motion. This improved understanding of DEP patterning kinetics provides a framework for new advances in the development of DEP-based biological devices and assays with minimal perturbation of cell behavior.
机译:介电泳(DEP)力已被广泛用于通过高梯度电场操纵,分离和定位生物细胞和生物颗粒。但是,由于可能会对细胞行为产生不利影响,因此希望DEP暴露时间最短。为了实现这一目标,本文研究了粒子构图动力学和效率的几何和材料决定因素。特别地,对于在驻波配置中通电的平面,叉指状条形电极阵列,理论上建模并通过实验验证了达到稳态模式所需的时间。根据DEP力的改进傅里叶级数解计算出这种构图效率的度量,其中施加了实际的边界条件和有限的腔室高度,以反映典型的微流体应用。腔室高度,电极间距以及流体粘度和电导率是深刻影响图案形成效率的参数,而优化可以将电场暴露减少几个数量级。建模策略可推广到任意电极设计以及DEP力可能不会单独作用而导致粒子运动的条件。对DEP模式动力学的这种更好的理解为基于DEP的生物装置和测定方法的发展提供了新的框架,并且对细胞行为的干扰最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号