首页> 美国卫生研究院文献>Biophysical Journal >Saturation transfer EPR spectroscopy on spin-labeled muscle fibers using a loop-gap resonator.
【2h】

Saturation transfer EPR spectroscopy on spin-labeled muscle fibers using a loop-gap resonator.

机译:使用环隙谐振器对自旋标记的肌纤维进行饱和转移EPR光谱分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Previously, saturation transfer (ST-EPR) studies of biomolecular dynamics have involved the use of a resonant cavity and the V'2 display (absorption, second harmonic, out of phase). In the present study, we replaced the resonant cavity with a loop-gap resonator and used the U'1 display (dispersion, first harmonic, out of phase) to study spin-labeled muscle fibers. The new resonator and display showed several advantages over those previously used. It produced virtually noiseless U'1 spectra on a 0.4 microliter sample using a 4 min scan; previous U'1 experiments on spin-labeled muscle, using a conventional rectangular cavity, resulted in an unacceptably low signal-to-noise ratio. The high filling factor of the resonator facilitated the study of these extremely small fiber bundles and permitted high microwave field intensities to be achieved at much lower incident microwave power levels, thus greatly enhancing the signal-to-noise ratio in U'1 experiments. This reduction in the noise level made it possible to benefit from the other advantages of U'1 over V'2, such as stronger signals, simpler line shapes, and simpler data analysis. For these muscle fiber samples, the resulting sensitivity (signaloise/sample volume) of the U'1 signals was greater than 100 times that of V'2 signals obtained in a conventional cavity. Another advantage of the U'1 display is that signals from weakly immobilized probes, i.e., probes that have nanosecond rotational mobility relative to the labeled protein (myosin), are greatly suppressed relative to strongly immobilized probes. This reduces the ambiguity of spectral analysis, and eliminates the need for chemical treatments [e.g., using K3Fe(CN)6] that were previously required in muscle fibers and other systems. Further suppression of this weakly immobilized component was achieved in U'1 spectra by increasing the microwave power and decreasing the field modulation frequency.
机译:以前,对生物分子动力学的饱和转移(ST-EPR)研究涉及使用谐振腔和V'2显示器(吸收,二次谐波,异相)。在本研究中,我们用环形间隙谐振器代替了谐振腔,并使用U'1显示器(色散,一次谐波,异相)来研究自旋标记的肌肉纤维。与以前使用的谐振器和显示器相比,新的谐振器和显示器具有多个优点。它使用4分钟扫描在0.4微升样品上产生了几乎无噪音的U'1光谱;以前的U'1实验是使用传统的矩形腔体在旋转标记的肌肉上进行的,导致信噪比过低。谐振器的高填充因子有助于研究这些极小的光纤束,并允许在低得多的入射微波功率水平下实现高微波场强度,从而大大提高了U'1实验中的信噪比。噪声电平的这种降低使得有可能受益于U'1优于V'2的其他优点,例如更强的信号,更简单的线形和更简单的数据分析。对于这些肌肉纤维样品,U'1信号的灵敏度(信号/噪声/样品体积)大于传统腔体中V'2信号的灵敏度的100倍。 U'1展示的另一个优点是,来自弱固定探针的信号,即相对于标记蛋白(肌球蛋白)具有纳秒旋转运动性的探针,相对于强固定探针的信号被大大抑制。这减少了频谱分析的歧义,并消除了以前在肌肉纤维和其他系统中需要的化学处理(例如,使用K3Fe(CN)6)的需要。通过增加微波功率并降低场调制频率,可以在U'1光谱中进一步抑制这种弱固定的组分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号