首页> 美国卫生研究院文献>BMC Bioinformatics >Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases
【2h】

Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases

机译:从异质药理数据库预测联合用药的不良药物反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundEarly and accurate identification of potential adverse drug reactions (ADRs) for combined medication is vital for public health. Existing methods either rely on expensive wet-lab experiments or detecting existing associations from related records. Thus, they inevitably suffer under-reporting, delays in reporting, and inability to detect ADRs for new and rare drugs. The current application of machine learning methods is severely impeded by the lack of proper drug representation and credible negative samples. Therefore, a method to represent drugs properly and to select credible negative samples becomes vital in applying machine learning methods to this problem.
机译:背景技术尽早而准确地确定联合用药的潜在不良药物反应(ADR)对于公共卫生至关重要。现有方法要么依靠昂贵的湿实验室实验,要么从相关记录中检测现有关联。因此,它们不可避免地遭受报告不足,报告延迟以及无法检测新药和稀有药物的ADR的困扰。机器学习方法的当前应用由于缺乏适当的药物表示和可靠的阴性样本而受到严重阻碍。因此,在将机器学习方法应用于此问题上,正确表示药物并选择可靠的阴性样品的方法变得至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号