首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Hummingbirds control turning velocity using body orientation and turning radius using asymmetrical wingbeat kinematics
【2h】

Hummingbirds control turning velocity using body orientation and turning radius using asymmetrical wingbeat kinematics

机译:蜂鸟通过身体定向控制转弯速度并通过不对称翼拍运动学控制转弯半径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left–right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius.
机译:飞行中的转弯需要重新定向力,鸟类,蝙蝠和昆虫可以通过共同移动身体位置和总力,或者在机翼运动学中使用左右不对称性来完成。尽管在多种物种中都观察到了这两种机制,但目前尚不知道如何使用每种机制来控制轨迹的变化。当蜂鸟跟踪旋转的喂食器时,我们通过测量身体和翅膀的运动学来解决这个问题,并使用准稳态模型估算空气动力。在弧形转弯期间,蜂鸟对称地倾斜了两个机翼的笔划平面,而身体则转成转弯,以支持与身体相关的机制。但是,在转弯过程中出现了多个机翼不对称,包括较高且较平的外翼梢路径和较低的偏斜内翼梢路径。对不同轨迹进行的弧形转弯的准稳态分析表明,半径的变化与不对称的运动学和力有关,而速度的变化与对称的运动学和力有关。总体而言,我们的结果表明,蜂鸟可以利用与身体有关的力和与对力量无关的力,并且这些运动学策略可用来应对速度和转弯半径变化带来的单独的空气动力学挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号