首页> 美国卫生研究院文献>Chemical Science >Revisiting a classical redox process on a gold electrode by operando ToF-SIMS: where does the gold go?
【2h】

Revisiting a classical redox process on a gold electrode by operando ToF-SIMS: where does the gold go?

机译:ToF-SIMS操作员在金电极上回顾经典的氧化还原工艺:金在哪里?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrochemical redox conversion between ferricyanide and ferrocyanide on a gold electrode is one of the most classical reactions in electrochemistry. In textbooks, the gold electrode is seen as chemically inert, on which only the adsorption/desorption of [Fe(CN)6]3/4– and electron transfer take place. Here, the electrochemical process of [Fe(CN)6]3/4– on a gold electrode was revisited using a vacuum-compatible microfluidic electrochemical cell in combination with operando liquid ToF-SIMS. An intermediate, Au(CN)2, was observed in the cyclic voltammetry of ferricyanide with an interesting periodic potential-dependent variation trend. It was demonstrated that the gold electrode participated in the redox reaction of [Fe(CN)6]3/4– by competing with it to form Au(CN)2, since the formation constant was Fe(CN)63– > Au(CN)2 > Fe(CN)64–. The formation and evolution of Au(CN)2 depends on the ratio of Fe(iii) and Fe(ii) on the surface of the gold electrode, which was determined by the redox conversion between Fe(iii) and Fe(ii) as well as the electric field force-based attraction or repulsion between the gold electrode and [Fe(CN)6]3/4–. Both of these factors were potential-dependent, resulting in the periodic change of Au(CN)2 in the dynamic potential scan of [Fe(CN)6]3/4–. These results provided solid molecular evidence for the participation of the gold electrode in the [Fe(CN)6]3/4– redox system, which will deepen mechanistic understandings of related electrochemical applications.
机译:金电极上铁氰化物和亚铁氰化物之间的电化学氧化还原转化是电化学中最经典的反应之一。在教科书中,金电极被视为化学惰性的,在金电极上仅发生[Fe(CN)6] 3/4 – 的吸附/解吸和电子转移。在此,结合使用真空兼容的微流电化学电池和操作性液体ToF-SIMS,重新探讨了[Fe(CN)6] 3/4 – 在金电极上的电化学过程。在铁氰化物的循环伏安法中观察到了中间体Au(CN)2 ,具有有趣的周期性电势依赖性变化趋势。结果表明,金电极通过与金电极竞争形成Au(CN)2 参与了[Fe(CN)6] 3/4 – 的氧化还原反应。 ,因为形成常数为Fe(CN)6 3 – 4 – 。 Au(CN)2 的形成和演化取决于金电极表面上Fe(iii)和Fe(ii)的比例,这取决于Fe(iii)之间的氧化还原转化率。 iii)和Fe(ii)以及金电极与[Fe(CN)6] 3/4 – 之间基于电场力的吸引或排斥。这两个因素均与电势有关,导致[Fe(CN)6] 3/4 – 的动态电势扫描中Au(CN)2 的周期性变化。 sup>。这些结果为金电极参与[Fe(CN)6] 3/4 – 氧化还原系统提供了坚实的分子证据,这将加深对相关电化学应用的机械理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号