首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PLGG1 a plastidic glycolate glycerate transporter is required for photorespiration and defines a unique class of metabolite transporters
【2h】

PLGG1 a plastidic glycolate glycerate transporter is required for photorespiration and defines a unique class of metabolite transporters

机译:PLGG1是质体乙醇酸甘油酸酯转运蛋白是光呼吸所必需的它定义了独特的代谢产物转运蛋白类别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Photorespiratory carbon flux reaches up to a third of photosynthetic flux, thus contributes massively to the global carbon cycle. The pathway recycles glycolate-2-phosphate, the most abundant byproduct of RubisCO reactions. This oxygenation reaction of RubisCO and subsequent photorespiration significantly limit the biomass gains of many crop plants. Although photorespiration is a compartmentalized process with enzymatic reactions in the chloroplast, the peroxisomes, the mitochondria, and the cytosol, no transporter required for the core photorespiratory cycle has been identified at the molecular level to date. Using transcript coexpression analyses, we identified Plastidal glycolate glycerate translocator 1 (PLGG1) as a candidate core photorespiratory transporter. Related genes are encoded in the genomes of archaea, bacteria, fungi, and all Archaeplastida and have previously been associated with a function in programmed cell-death. A mutant deficient in PLGG1 shows WT-like growth only in an elevated carbon dioxide atmosphere. The mutant accumulates glycolate and glycerate, leading to the hypothesis that PLGG1 is a glycolate/glycerate transporter. This hypothesis was tested and supported by in vivo and in vitro transport assays and 18O2-metabolic flux profiling. Our results indicate that PLGG1 is the chloroplastidic glycolate/glycerate transporter, which is required for the function of the photorespiratory cycle. Identification of the PLGG1 transport function will facilitate unraveling the role of similar proteins in bacteria, archaea, and fungi in the future.
机译:光呼吸碳通量达到光合通量的三分之一,因此对全球碳循环有很大贡献。该途径回收了RubisCO反应中最丰富的副产物乙醇酸-2-磷酸酯。 RubisCO的这种氧化反应和随后的光呼吸作用显着限制了许多农作物的生物量。尽管光呼吸是在叶绿体,过氧化物酶体,线粒体和细胞质中发生酶促反应的分隔过程,但迄今为止在分子水平上尚未发现核心光呼吸循环所需的转运蛋白。使用转录本共表达分析,我们确定了Plastidalglycate甘油酸转运蛋白1(PLGG1)为候选核心光呼吸转运蛋白。相关基因在古细菌,细菌,真菌和所有古细菌的基因组中编码,并且以前与程序性细胞死亡中的功能相关。缺乏PLGG1的突变体仅在升高的二氧化碳气氛中显示出WT样生长。该突变体积累了乙醇酸和甘油酸,从而得出了PLGG1是乙醇酸/甘油酸转运蛋白的假设。通过体内和体外转运试验以及 18 O2-代谢通量分析对这一假设进行了测试和支持。我们的结果表明PLGG1是叶绿体乙醇酸/甘油酸转运蛋白,是光呼吸循环功能所必需的。 PLGG1转运功能的鉴定将有助于将来阐明相似蛋白质在细菌,古细菌和真菌中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号