首页> 美国卫生研究院文献>NPJ Systems Biology and Applications >Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm
【2h】

Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm

机译:通过使用新型基因表达签名生成算法改进了对PARP抑制剂应答的预测和协同剂的鉴定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite rapid advancement in generation of large-scale microarray gene expression datasets, robust multigene expression signatures that are capable of guiding the use of specific therapies have not been routinely implemented into clinical care. We have developed an iterative resampling analysis to predict sensitivity algorithm to generate gene expression sensitivity profiles that predict patient responses to specific therapies. The resultant signatures have a robust capacity to accurately predict drug sensitivity as well as the identification of synergistic combinations. Here, we apply this approach to predict response to PARP inhibitors, and show it can greatly outperforms current clinical biomarkers, including BRCA1/2 mutation status, accurately identifying PARP inhibitor-sensitive cancer cell lines, primary patient-derived tumor cells, and patient-derived xenografts. These signatures were also capable of predicting patient response, as shown by applying a cisplatin sensitivity signature to ovarian cancer patients. We additionally demonstrate how these drug-sensitivity signatures can be applied to identify novel synergizing agents to improve drug efficacy. Tailoring therapeutic interventions to improve patient prognosis is of utmost importance, and our drug sensitivity prediction signatures may prove highly beneficial for patient management.
机译:尽管大规模微阵列基因表达数据集的产生迅速发展,但是能够指导特定疗法使用的强大的多基因表达特征尚未在临床护理中常规实施。我们已经开发了一种迭代重采样分析来预测敏感性算法,以生成可预测患者对特定疗法反应的基因表达敏感性概况。所得的特征具有准确预测药物敏感性以及鉴定协同组合的强大能力。在这里,我们采用这种方法来预测对PARP抑制剂的反应,并表明它可以大大优于当前的临床生物标志物,包括BRCA1 / 2突变状态,准确识别PARP抑制剂敏感的癌细胞系,原发性患者衍生的肿瘤细胞以及衍生异种。这些标记还能够预测患者的反应,如将顺铂敏感性标记应用于卵巢癌患者即可。我们还演示了如何将这些药物敏感性签名应用于鉴定新型协同剂以改善药物疗效。量身定制治疗干预措施以改善患者的预后至关重要,我们的药物敏感性预测特征​​可能对患者管理非常有益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号