首页> 美国卫生研究院文献>NeuroImage : Clinical >Predicting conversion from clinically isolated syndrome to multiple sclerosis–An imaging-based machine learning approach
【2h】

Predicting conversion from clinically isolated syndrome to multiple sclerosis–An imaging-based machine learning approach

机译:预测从临床孤立综合征到多发性硬化的转化-基于影像的机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetic resonance imaging (MRI) scans play a pivotal role in the evaluation of patients presenting with a clinically isolated syndrome (CIS), as these may depict brain lesions suggestive of an inflammatory cause. We hypothesized that it is possible to predict the conversion from CIS to multiple sclerosis (MS) based on the baseline MRI scan by studying image features of these lesions.We analyzed 84 patients diagnosed with CIS from a prospective observational single center cohort. The patients were followed up for at least three years. Conversion to MS was defined according to the 2010 McDonald criteria. Brain lesions were segmented based on 3D FLAIR and 3D T1 images. We generated brain lesion masks by a computer assisted manual segmentation. We also generated a set of automated segmentations using the Lesion Segmentation Toolbox for SPM to assess the influence of different segmentation methods. Shape and brightness features were automatically calculated from the segmented masks and used as input data to train an oblique random forest classifier. Prediction accuracies of the resulting model were validated through a three-fold cross-validation.Conversion from CIS to MS occurred in 66 of 84 patients (79%). The conversion or non-conversion was predicted correctly in 71 patients based on shape features derived from the computer assisted manual segmentation masks (84.5% accuracy). This predictor was more accurate than predicting conversion using dissemination in space at baseline according to the 2010 McDonald criteria (75% accuracy). While shape features strongly contributed to the accuracy of the predictor, including intensity features did not further improve performance.As patients who convert to definite MS benefit from early treatment, an early classification model is highly desirable. Our study shows that shape parameters of lesions can contribute to predicting the future course of CIS patients more accurately.
机译:磁共振成像(MRI)扫描在评估患有临床孤立综合征(CIS)的患者中起着关键作用,因为这些可能描绘出提示炎症原因的脑部病变。我们假设通过研究这些病灶的图像特征,可以根据基线MRI扫描预测从CIS转变为多发性硬化症(MS)。我们从前瞻性观察性单中心队列分析了84例诊断为CIS的患者。对患者进行了至少三年的随访。根据2010麦当劳标准定义了向MS的转化。根据3D FLAIR和3D T1图像对脑部病变进行分割。我们通过计算机辅助的手动分割生成了脑损伤罩。我们还使用Lesion Segmentation Toolbox for SPM生成了一组自动分割,以评估不同分割方法的影响。根据分割的蒙版自动计算形状和亮度特征,并将其用作训练倾斜随机森林分类器的输入数据。通过三重交叉验证验证了所得模型的预测准确性.84例患者中有66例(79%)从CIS转换为MS。根据计算机辅助手动分割蒙版的形状特征,正确预测了71位患者的转换或不转换(准确度为84.5%)。根据2010年麦当劳标准,此预测变量比使用基线在空间中的传播预测转换更为准确(准确性为75%)。尽管形状特征对预测器的准确性有很大贡献,但强度特征并没有进一步改善性能。随着转换为明确MS的患者受益于早期治疗,早期分类模型是非常理想的。我们的研究表明,病变的形状参数可以有助于更准确地预测CIS患者的未来病程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号