首页> 美国卫生研究院文献>Molecules >Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach
【2h】

Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach

机译:堆叠深层异构信息网络嵌入方法的药物不良反应预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inferring potential adverse drug reactions is an important and challenging task for the drug discovery and healthcare industry. Many previous studies in computational pharmacology have proposed utilizing multi-source drug information to predict drug side effects have and achieved initial success. However, most of the prediction methods mainly rely on direct similarities inferred from drug information and cannot fully utilize the drug information about the impact of protein–protein interactions (PPI) on potential drug targets. Moreover, most of the methods are designed for specific tasks. In this work, we propose a novel heterogeneous network embedding approach for learning drug representations called SDHINE, which integrates PPI information into drug embeddings and is generic for different adverse drug reaction (ADR) prediction tasks. To integrate heterogeneous drug information and learn drug representations, we first design different meta-path-based proximities to calculate drug similarities, especially target propagation meta-path-based proximity based on PPI network, and then construct a semi-supervised stacking deep neural network model that is jointly optimized by the defined meta-path proximities. Extensive experiments with three state-of-the-art network embedding methods on three ADR prediction tasks demonstrate the effectiveness of the SDHINE model. Furthermore, we compare the drug representations in terms of drug differentiation by mapping the representations into 2D space; the results show that the performance of our approach is superior to that of the comparison methods.
机译:推断潜在的药物不良反应是药物开发和医疗保健行业一项重要且具有挑战性的任务。计算药理学的许多先前研究已提出利用多源药物信息来预测药物副作用并已取得初步成功。但是,大多数预测方法主要依靠从药物信息推断出的直接相似性,并且不能充分利用有关蛋白质相互作用的药物信息(PPI)对潜在药物靶标的影响。而且,大多数方法都是为特定任务而设计的。在这项工作中,我们提出了一种新的用于学习药物表示的异构网络嵌入方法,称为SDHINE,该方法将PPI信息集成到药物嵌入中,并且对于不同的药物不良反应(ADR)预测任务具有通用性。为了整合异类药物信息并学习药物表示,我们首先设计不同的基于元路径的邻近度来计算药物相似性,尤其是基于PPI网络的目标传播基于元路径的邻近度,然后构建一个半监督的堆叠深度神经网络。通过定义的元路径邻近度共同优化的模型。在三种ADR预测任务上使用三种最先进的网络嵌入方法进行的广泛实验证明了SDHINE模型的有效性。此外,我们通过将表示形式映射到2D空间来比较药物表示形式的区别。结果表明,我们的方法的性能优于比较方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号