首页> 美国卫生研究院文献>Molecular Cellular Proteomics : MCP >Cell Cycle Regulation of Microtubule Interactomes: Multi-layered Regulation Is Critical for the Interphase/Mitosis Transition
【2h】

Cell Cycle Regulation of Microtubule Interactomes: Multi-layered Regulation Is Critical for the Interphase/Mitosis Transition

机译:微管相互作用的细胞周期调节:多层调节对于相间/有丝分裂过渡至关重要。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microtubules dramatically change their dynamics and organization at the entry into mitosis. Although this change is mediated by microtubule-associated proteins (MAPs), how MAPs themselves are regulated is not well understood. Here we used an integrated multi-level approach to establish the framework and biological significance of MAP regulation critical for the interphase/mitosis transition. Firstly, we applied quantitative proteomics to determine global cell cycle changes in the profiles of MAPs in human and Drosophila cells. This uncovered a wide range of cell cycle regulations of MAPs previously unidentified. Secondly, systematic studies of human kinesins highlighted an overlooked aspect of kinesins: most mitotic kinesins suppress their affinity to microtubules or reduce their protein levels in interphase in combination with nuclear localization. Thirdly, in-depth analysis of a novel Drosophila MAP (Mink) revealed that the suppression of the microtubule affinity of this mitotic MAP in combination with nuclear localization is essential for microtubule organization in interphase, and phosphorylation of Mink is needed for kinetochore-microtubule attachment in mitosis. Thus, this first comprehensive analysis of MAP regulation for the interphase/mitosis transition advances our understanding of kinesin biology and reveals the prevalence and importance of multi-layered MAP regulation.
机译:微管在进入有丝分裂时会极大地改变其动力学和组织。尽管此变化是由微管相关蛋白(MAPs)介导的,但对MAPs本身如何调控的了解却很少。在这里,我们使用集成的多级方法来建立对相间/有丝分裂过渡至关重要的MAP调节的框架和生物学意义。首先,我们应用定量蛋白质组学来确定人和果蝇细胞中MAPs的总体细胞周期变化。这揭示了以前未发现的MAP的广泛的细胞周期调控。其次,对人类驱动蛋白的系统研究突出了驱动蛋白的一个被忽视的方面:大多数有丝分裂驱动蛋白在与核定位相结合的过程中会抑制它们对微管的亲和力或降低其蛋白水平。第三,对新型果蝇MAP(Mink)的深入分析表明,抑制有丝分裂MAP的微管亲和力与核定位相结合对于中间相中的微管组织是必不可少的,并且Mink的磷酸化对于线粒体-微管的附着是必需的。在有丝分裂中。因此,对MAP调控相间/有丝分裂过渡的第一个全面分析提高了我们对驱动蛋白生物学的理解,并揭示了多层MAP调控的普遍性和重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号