首页> 美国卫生研究院文献>PLoS Computational Biology >Examining the controllability of sepsis using genetic algorithms on an agent-based model of systemic inflammation
【2h】

Examining the controllability of sepsis using genetic algorithms on an agent-based model of systemic inflammation

机译:在基于代理的全身性炎症模型上使用遗传算法检查败血症的可控性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sepsis, a manifestation of the body’s inflammatory response to injury and infection, has a mortality rate of between 28%-50% and affects approximately 1 million patients annually in the United States. Currently, there are no therapies targeting the cellular/molecular processes driving sepsis that have demonstrated the ability to control this disease process in the clinical setting. We propose that this is in great part due to the considerable heterogeneity of the clinical trajectories that constitute clinical “sepsis,” and that determining how this system can be controlled back into a state of health requires the application of concepts drawn from the field of dynamical systems. In this work, we consider the human immune system to be a random dynamical system, and investigate its potential controllability using an agent-based model of the innate immune response (the Innate Immune Response ABM or IIRABM) as a surrogate, proxy system. Simulation experiments with the IIRABM provide an explanation as to why single/limited cytokine perturbations at a single, or small number of, time points is unlikely to significantly improve the mortality rate of sepsis. We then use genetic algorithms (GA) to explore and characterize multi-targeted control strategies for the random dynamical immune system that guide it from a persistent, non-recovering inflammatory state (functionally equivalent to the clinical states of systemic inflammatory response syndrome (SIRS) or sepsis) to a state of health. We train the GA on a single parameter set with multiple stochastic replicates, and show that while the calculated results show good generalizability, more advanced strategies are needed to achieve the goal of adaptive personalized medicine. This work evaluating the extent of interventions needed to control a simplified surrogate model of sepsis provides insight into the scope of the clinical challenge, and can serve as a guide on the path towards true “precision control” of sepsis.
机译:脓毒症是人体对损伤和感染发炎反应的一种表现,其死亡率在28%-50%之间,在美国每年影响约100万患者。目前,尚无针对驱动败血症的细胞/分子过程的疗法,已证明在临床环境中能够控制该疾病的过程。我们认为,这在很大程度上是由于构成临床“败血症”的临床轨迹存在很大的异质性,并且确定如何将该系统控制回健康状态需要应用动态领域的概念。系统。在这项工作中,我们将人类免疫系统视为一个随机动力学系统,并使用基于代理的先天免疫应答模型(先天免疫应答ABM或IIRABM)作为替代,代理系统来研究其潜在的可控性。使用IIRABM进行的模拟实验可解释为何在单个或少数几个时间点出现单个/有限的细胞因子扰动不太可能显着提高败血症的死亡率。然后,我们使用遗传算法(GA)探索和表征随机动态免疫系统的多目标控制策略,以指导其从持续性,非恢复性炎症状态(功能等同于全身性炎症反应综合征(SIRS)的临床状态)或败血症)恢复到健康状态。我们在具有多个随机重复的单个参数集上训练遗传算法,并表明尽管计算结果显示出良好的通用性,但仍需要更高级的策略来实现自适应个性化医学的目标。这项工作评估了控制简化的脓毒症替代模型所需干预措施的范围,可以深入了解临床挑战的范围,并可以为脓毒症真正实现“精确控制”提供指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号