首页> 美国卫生研究院文献>PLoS Computational Biology >Inter-domain Communication Mechanisms in an ABC Importer: A Molecular Dynamics Study of the MalFGK2E Complex
【2h】

Inter-domain Communication Mechanisms in an ABC Importer: A Molecular Dynamics Study of the MalFGK2E Complex

机译:ABC进口商中的域间通信机制:MalFGK2E复合物的分子动力学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ATP-Binding Cassette transporters are ubiquitous membrane proteins that convert the energy from ATP-binding and hydrolysis into conformational changes of the transmembrane region to allow the translocation of substrates against their concentration gradient. Despite the large amount of structural and biochemical data available for this family, it is still not clear how the energy obtained from ATP hydrolysis in the ATPase domains is “transmitted” to the transmembrane domains. In this work, we focus our attention on the consequences of hydrolysis and inorganic phosphate exit in the maltose uptake system (MalFGK2E) from Escherichia coli. The prime goal is to identify and map the structural changes occurring during an ATP-hydrolytic cycle. For that, we use extensive molecular dynamics simulations to study three potential intermediate states (with 10 replicates each): an ATP-bound, an ADP plus inorganic phosphate-bound and an ADP-bound state. Our results show that the residues presenting major rearrangements are located in the A-loop, in the helical sub-domain, and in the “EAA motif” (especially in the “coupling helices” region). Additionally, in one of the simulations with ADP we were able to observe the opening of the NBD dimer accompanied by the dissociation of ADP from the ABC signature motif, but not from its corresponding P-loop motif. This work, together with several other MD studies, suggests a common communication mechanism both for importers and exporters, in which ATP-hydrolysis induces conformational changes in the helical sub-domain region, in turn transferred to the transmembrane domains via the “coupling helices”.
机译:ATP结合盒式转运蛋白是一种遍在膜蛋白,可将ATP结合和水解过程中的能量转换为跨膜区域的构象变化,从而使底物能够针对其浓度梯度进行转运。尽管该家族拥有大量的结构和生化数据,但仍不清楚如何从ATPase域中的ATP水解获得的能量“传输”到跨膜域。在这项工作中,我们将注意力集中在大肠杆菌的麦芽糖摄取系统(MalFGK2E)中水解和无机磷酸盐逸出的后果上。主要目标是识别并绘制在ATP水解循环中发生的结构变化。为此,我们使用广泛的分子动力学模拟来研究三个潜在的中间状态(每个中间状态有10个重复):一个ATP结合,一个ADP加无机磷酸盐结合和一个ADP结合状态。我们的结果表明,呈现主要重排的残基位于A环,螺旋亚结构域和“ EAA主题”中(尤其是在“耦合螺旋”区域中)。此外,在使用ADP进行的模拟之一中,我们能够观察到NBD二聚体的打开,伴随着ADP从ABC签名基序解离,但没有从其相应的P环基序解离。这项工作以及其他一些医学博士研究,为进口商和出口商提出了一种通用的交流机制,其中ATP水解诱导螺旋亚域区域的构象变化,然后通过“耦合螺旋”转移到跨膜域。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号