首页> 美国卫生研究院文献>Biophysical Journal >Molecular Dynamics Studies of the Wild-Type and Double Mutant HIV-1 Integrase Complexed with the 5CITEP Inhibitor: Mechanism for Inhibition and Drug Resistance
【2h】

Molecular Dynamics Studies of the Wild-Type and Double Mutant HIV-1 Integrase Complexed with the 5CITEP Inhibitor: Mechanism for Inhibition and Drug Resistance

机译:野生型和双突变HIV-1整合酶与5CITEP抑制剂复合的分子动力学研究:抑制和耐药性的机制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the life cycle of the virus and is an attractive target for the development of new drugs useful in acquired immunodeficiency syndrome multidrug therapy. Starting from the crystal structure of the 5CITEP inhibitor bound to the active site in the catalytic domain of the HIV-1 IN, two different molecular dynamics simulations in water have been carried out. In the first simulation the wild-type IN was used, whereas in the second one the double mutation T66I/M154I, described to lead to drug resistance, was introduced in the protein. Compelling differences have been observed in these two structures during analyses of the molecular dynamics trajectories, particularly in the inhibitor binding modes and in the conformational flexibility of the loop (residues 138–149) located near the three catalytic residues in the active site (Asp64, Asp116, Glu152). Because the conformational flexibility of this region is important for efficient biological activity and its behavior is quite different in the two models, we suggest a hypothetical mechanism for the inhibition and drug resistance of HIV-1 IN. These results can be useful for the rational design of more potent and selective integrase inhibitors and may allow for the design of inhibitors that will be more robust against known resistance mutations.
机译:1型人类免疫缺陷病毒(HIV-1)整合酶(IN)是该病毒生命周期中必不可少的酶,并且是开发可用于获得性免疫缺陷综合症多药疗法的新药的有吸引力的目标。从结合到HIV-1 IN催化域中活性位点的5CITEP抑制剂的晶体结构开始,已经在水中进行了两种不同的分子动力学模拟。在第一个模拟中,使用野生型IN,而在第二个模拟中,将被描述为导致耐药性的双重突变T66I / M154I引入了蛋白质。在分子动力学轨迹的分析过程中,观察到这两个结构存在显着差异,特别是在抑制剂结合模式和位于活性位点三个催化残基附近的环(残基138-149)的构象柔韧性(Asp < sup> 64 ,Asp 116 ,Glu 152 )。因为该区域的构象柔韧性对于有效的生物学活性很重要,并且在两种模型中其行为都大不相同,所以我们提出了一种抑制HIV-1 IN的机制和耐药性的假设机制。这些结果可用于更有效和选择性更强的整合酶抑制剂的合理设计,并且可允许设计对已知抗性突变更为稳健的抑制剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号