首页> 美国卫生研究院文献>PLoS Computational Biology >Adaptive Fast Walking in a Biped Robot under Neuronal Control and Learning
【2h】

Adaptive Fast Walking in a Biped Robot under Neuronal Control and Learning

机译:在神经元控制和学习下的两足动物机器人中的自适应快速行走

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.
机译:人体步行是一个动态的,部分自我稳定的过程,它依赖于生物力学设计与其神经元控制的相互作用。这个过程的协调是一个非常困难的问题,有人建议它涉及一个层次的层次结构,其中较低的层次(例如,肌肉与脊髓之间的相互作用)在很大程度上是自主的,而较高层次的控制(例如,皮质)仅根据需要逐点出现。这就需要一个由多个嵌套的感觉运动回路组成的体系结构,其中步行过程会向步行者的感觉系统提供反馈信号,可用于协调步行者的运动。使情况复杂化的是,在最大步行速度超过每秒四条腿的速度下,可用于协调所有这些循环的周期很短。在这项研究中,我们提出了一种平面两足动物机器人,该机器人使用嵌套环的设计原理将其生物力学设计的自稳定特性与多个级​​别的神经元控制相结合。具体来说,我们展示了如何通过包含基于模拟突触可塑性的在线学习机制来适应控制。该机器人可以高速行走(> 3.0腿长/ s),可以适应轻微的干扰,并以强烈的方式做出反应,以引起步态突然变化。同时,它可以学习在不同地形上行走,只需要很少的学习经验。这项研究表明,在步行模式本身的感官反馈的引导下,物理控制与神经控制的紧密结合,再加上突触学习,可能是一种更好地理解和解决其他复杂运动任务协调问题的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号