首页> 美国卫生研究院文献>Cognitive Neurodynamics >Intrinsic mode entropy based on multivariate empirical mode decomposition and its application to neural data analysis
【2h】

Intrinsic mode entropy based on multivariate empirical mode decomposition and its application to neural data analysis

机译:基于多元经验模式分解的本征模熵及其在神经数据分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Entropy, a measure of the regularity of a time series, has long been used to quantify the complexity of brain dynamics. Given the multiple spatiotemporal scales inherent in the brain, traditional entropy analysis based on a single scale is not adequate to accurately describe the underlying nonlinear dynamics. Intrinsic mode entropy (IMEn) is a recent development with appealing properties to estimate entropy over multiple time scales. It is a multiscale entropy measure that computes sample entropy (SampEn) over different scales of intrinsic mode functions extracted by empirical mode decomposition (EMD) method. However, it suffers from both mode-misalignment and mode-mixing problems when applied to multivariate time series data. In this paper, we address these two problems by employing the recently introduced multivariate empirical mode decomposition (MEMD). First, we extend the MEMD to multi-channel multi-trial neural data to ensure the IMEn matched at different scales. Second, for the discriminant analysis of IMEn, we propose to improve the discriminative ability by including variance that has not been used before in entropy analysis. Finally, we apply the proposed approach to the multi-electrode local field potentials (LFPs) simultaneously collected from visual cortical areas of macaque monkeys while performing a generalized flash suppression task. The results have shown that the entropy of LFP is indeed scale-dependent and is closely related to the perceptual conditions. The discriminative results of the perceptual conditions, revealed by support vector machine, show that the accuracy based on IMEn and variance reaches 83.05%, higher than that only by IMEn (76.27%). These results suggest that our approach is sensitive to capture the complex dynamics of neural data.
机译:熵是衡量时间序列规律性的一种手段,长期以来一直用于量化大脑动力学的复杂性。考虑到大脑固有的多个时空尺度,基于单个尺度的传统熵分析不足以准确地描述潜在的非线性动力学。本征模式熵(IMEn)是最近的发展,具有吸引人的特性来估计多个时间尺度上的熵。它是一种多尺度熵度量,用于计算通过经验模式分解(EMD)方法提取的不同尺度的固有模式函数的样本熵(SampEn)。但是,当将其应用于多元时间序列数据时,会同时遇到模式未对准和模式混合的问题。在本文中,我们通过使用最近引入的多元经验模式分解(MEMD)解决了这两个问题。首先,我们将MEMD扩展到多通道多试验神经数据,以确保IMEn在不同规模上匹配。其次,对于IMEn的判别分析,我们建议通过包括熵分析之前未使用的方差来提高判别能力。最后,我们将提出的方法应用于从猕猴的视觉皮层区域同时收集的多电极局部场电势(LFP),同时执行广义的闪光抑制任务。结果表明,LFP的熵确实与尺度有关,并且与知觉条件密切相关。支持向量机揭示的感知条件的判别结果表明,基于IMEn和方差的准确率达到83.05%,高于仅IMEn的准确率(76.27%)。这些结果表明,我们的方法对于捕获神经数据的复杂动态非常敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号