首页> 美国卫生研究院文献>Frontiers in Neural Circuits >Model-based analysis of pattern motion processing in mouse primary visual cortex
【2h】

Model-based analysis of pattern motion processing in mouse primary visual cortex

机译:基于模型的小鼠初级视觉皮层模式运动处理分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features.
机译:新皮层感觉区域的神经元表现出适应于环境特定特征的反应。在视觉皮层中,必​​须集成有关具有特定方向的特征(例如边缘或纹理)的信息,以识别视觉场景或对象。啮齿动物皮层的连通性研究表明,神经元在共享公共输入调整的子网内建立特定的连接。原则上,这种子网结构使本地皮层电路能够整合感官信息。但是,特征整合是否确实确实在啮齿动物的主要感觉区域中局部发生尚未得到直接检查。我们通过呈现漂移光栅和格子刺激,同时通过双光子钙成像记录神经元群体的活动,研究了小鼠初级视觉皮层(V1)的感觉功能的局部整合。使用基于贝叶斯模型的分析框架,我们将单细胞响应分类为对单个光栅组件或移动的格子图案具有选择性。我们基于模型的框架无需依赖平均试验响应,而将单一试验响应纳入考虑范围,可以轻松扩展为考虑任意数量的任意预测模型。与传统的部分相关(PC)分析相比,我们的分析方法能够成功地对更多的响应进行分类,并提供了严格的统计框架来对任意数量的模型进行排名并拒绝效果不佳的模型。我们还发现很大一部分细胞仅对一种刺激类别产生强烈反应。此外,四分之一的选择性反应神经元具有更复杂的反应,无法通过任何简单的整合模型来解释。我们的结果表明,已经在V1级别进行了广泛的模式集成过程。集成的多样性与V1中本地子网对视觉输入的处理一致,这些视觉网络已调整为感官功能的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号