首页> 美国卫生研究院文献>Frontiers in Aging Neuroscience >Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimers Disease: A Systematic Review
【2h】

Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimers Disease: A Systematic Review

机译:阿尔茨海默氏病神经影像数据分类的随机森林算法:系统综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Objective: Machine learning classification has been the most important computational development in the last years to satisfy the primary need of clinicians for automatic early diagnosis and prognosis. Nowadays, Random Forest (RF) algorithm has been successfully applied for reducing high dimensional and multi-source data in many scientific realms. Our aim was to explore the state of the art of the application of RF on single and multi-modal neuroimaging data for the prediction of Alzheimer's disease.>Methods: A systematic review following PRISMA guidelines was conducted on this field of study. In particular, we constructed an advanced query using boolean operators as follows: (“random forest” OR “random forests”) AND neuroimaging AND (“alzheimer's disease” OR alzheimer's OR alzheimer) AND (prediction OR classification). The query was then searched in four well-known scientific databases: Pubmed, Scopus, Google Scholar and Web of Science.>Results: Twelve articles—published between the 2007 and 2017—have been included in this systematic review after a quantitative and qualitative selection. The lesson learnt from these works suggest that when RF was applied on multi-modal data for prediction of Alzheimer's disease (AD) conversion from the Mild Cognitive Impairment (MCI), it produces one of the best accuracies to date. Moreover, the RF has important advantages in terms of robustness to overfitting, ability to handle highly non-linear data, stability in the presence of outliers and opportunity for efficient parallel processing mainly when applied on multi-modality neuroimaging data, such as, MRI morphometric, diffusion tensor imaging, and PET images.>Conclusions: We discussed the strengths of RF, considering also possible limitations and by encouraging further studies on the comparisons of this algorithm with other commonly used classification approaches, particularly in the early prediction of the progression from MCI to AD.
机译:>目的:机器学习分类已成为近年来最重要的计算开发,以满足临床医生对自动早期诊断和预后的主要需求。如今,随机森林(RF)算法已成功地用于在许多科学领域中减少高维和多源数据。我们的目的是探索在单模态和多模态神经影像数据上应用RF预测阿尔茨海默氏病的最新技术。>方法:根据PRISMA指南对该领域进行了系统的综述研究。特别是,我们使用布尔运算符构造了一个高级查询,如下所示:(“随机森林”或“随机森林”)和神经影像AND(“阿尔茨海默氏病”或阿尔茨海默氏病或​​阿尔茨海默氏症)和(预测OR分类)。然后在四个著名的科学数据库中搜索该查询:Pubmed,Scopus,Google Scholar和Web of Science。>结果:该系统评价包括2007年至2017年之间发表的十二篇文章。经过定量和定性的选择。从这些工作中吸取的教训表明,当将RF应用于多模态数据以预测轻度认知障碍(MCI)转化为阿尔茨海默氏病(AD)时,它将产生迄今为止最好的准确性之一。此外,RF的主要优点是过拟合的鲁棒性,处理高度非线性数据的能力,离群值存在时的稳定性以及有效地进行并行处理的机会,主要适用于多形态神经影像数据(如MRI形态计量学) ,扩散张量成像和PET图像。>结论:我们讨论了RF的优势,同时考虑了可能的局限性,并鼓励进一步研究此算法与其他常用分类方法的比较,特别是在从MCI到AD进展的早期预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号