首页> 中文期刊> 《科学技术与工程》 >基于卷积神经网络与随机森林算法的专利文本分类模型

基于卷积神经网络与随机森林算法的专利文本分类模型

     

摘要

An english mechanical patent classification model was proposed based on convolutional neural net -works and random forest to address automatically patent classification problem.The convolutional neural networks work as the supervised feature extractor and the random forest algorithm serves as the classifier.A series of experi-ments have conducted in a dataset which consists of 107 302 english mechanical patent documents distributed in 96 categories at subclass level.The experiment results show that model achieved a significant improvement when com-paring to classical machine learning methods such as,k-nearest neighbor,Na?ve Bayes,and random forest,in pre-cision,recall,and F1 aspects respectively.%为解决专利文档的自动化分类,根据机械领域专利文本的特点,提出了一种基于卷积神经网络与随机森林的机械专利文本分类模型;该模型应用卷积神经网络作为有监督的文本特征提取器,结合随机森林作为分类器,面向机械领域专利文本进行专利文本分类.该模型被应用在包含96类的107302份英文机械专利文档的数据集上.实验结果表明,该模型相比k近邻、Na?ve Bayes、随机森林等经典机器学习算法在准确率、召回率以及查全率方面均有显著提高.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号