首页> 美国卫生研究院文献>IEEE Journal of Translational Engineering in Health and Medicine >Identifying Cancer Biomarkers From Microarray Data Using Feature Selection and Semisupervised Learning
【2h】

Identifying Cancer Biomarkers From Microarray Data Using Feature Selection and Semisupervised Learning

机译:使用特征选择和半监督学习从微阵列数据中识别癌症生物标志物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microarrays have now gone from obscurity to being almost ubiquitous in biological research. At the same time, the statistical methodology for microarray analysis has progressed from simple visual assessments of results to novel algorithms for analyzing changes in expression profiles. In a micro-RNA (miRNA) or gene-expression profiling experiment, the expression levels of thousands of genes/miRNAs are simultaneously monitored to study the effects of certain treatments, diseases, and developmental stages on their expressions. Microarray-based gene expression profiling can be used to identify genes, whose expressions are changed in response to pathogens or other organisms by comparing gene expression in infected to that in uninfected cells or tissues. Recent studies have revealed that patterns of altered microarray expression profiles in cancer can serve as molecular biomarkers for tumor diagnosis, prognosis of disease-specific outcomes, and prediction of therapeutic responses. Microarray data sets containing expression profiles of a number of miRNAs or genes are used to identify biomarkers, which have dysregulation in normal and malignant tissues. However, small sample size remains a bottleneck to design successful classification methods. On the other hand, adequate number of microarray data that do not have clinical knowledge can be employed as additional source of information. In this paper, a combination of kernelized fuzzy rough set (KFRS) and semisupervised support vector machine (S3VM) is proposed for predicting cancer biomarkers from one miRNA and three gene expression data sets. Biomarkers are discovered employing three feature selection methods, including KFRS. The effectiveness of the proposed KFRS and S3VM combination on the microarray data sets is demonstrated, and the cancer biomarkers identified from miRNA data are reported. Furthermore, biological significance tests are conducted for miRNA cancer biomarkers.
机译:微阵列现在已经从模糊不清变成了生物学研究中几乎无处不在的事物。同时,用于微阵列分析的统计方法已从对结果的简单视觉评估发展为用于分析表达谱变化的新型算法。在微RNA(miRNA)或基因表达谱实验中,同时监测数千种基因/ miRNA的表达水平,以研究某些治疗方法,疾病和发育阶段对其表达的影响。基于微阵列的基因表达谱可用于鉴定基因,通过比较感染的基因表达与未感染的细胞或组织中的基因表达,可响应病原体或其他生物改变其表达。最近的研究表明,癌症中微阵列表达谱改变的模式可以作为分子生物标记物,用于肿瘤诊断,疾病特异性结局的预后以及治疗反应的预测。包含许多miRNA或基因表达谱的微阵列数据集可用于识别在正常和恶性组织中存在异常调节的生物标志物。但是,小样本量仍然是设计成功分类方法的瓶颈。另一方面,可以将足够数量的不具有临床知识的微阵列数据用作附加信息源。本文提出了一种基于核模糊粗糙集(KFRS)和半监督支持向量机(S 3 VM)的组合,用于从一个miRNA和三个基因表达数据集预测癌症生物标志物。使用三种特征选择方法(包括KFRS)发现了生物标记。证明了所提出的KFRS和S 3 VM组合在微阵列数据集上的有效性,并报道了从miRNA数据鉴定出的癌症生物标志物。此外,针对miRNA癌症生物标记物进行了生物学意义测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号