首页> 中文期刊>水科学与水工程 >Effects of hydraulic retention time, temperature, and effluent recycling on efficiency of anaerobic filter in treating rural domestic wastewater

Effects of hydraulic retention time, temperature, and effluent recycling on efficiency of anaerobic filter in treating rural domestic wastewater

     

摘要

With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time(HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter(AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91℃; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for +4NH-N, 19% to 23% for 3NO-N-, and 12% to 22% for TP. In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for +4NH-N, 30% to 34% for 3NO-N-, and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling.

著录项

  • 来源
    《水科学与水工程》|2014年第2期|168-182|共15页
  • 作者单位

    School of Energy and Environment, Southeast University, Nanjing 210096, P.R.China;

    College of Natural Resources and Environmental Studies, University of Juba, Juba 82, South Sudan;

    School of Energy and Environment, Southeast University, Nanjing 210096, P.R.China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2023-07-26 01:35:56

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号