首页> 中文期刊> 《内燃机学报》 >基于动态递归神经网络的HCCI发动机燃烧相位辨识模型

基于动态递归神经网络的HCCI发动机燃烧相位辨识模型

     

摘要

为了实现HCCI汽油机闭环反馈控制,提出了一种利用动态递归神经网络从气缸压力信号在线辨识燃烧相位CA50(燃烧50%累积放热量的曲轴转角)的方法.该方法采集上止点附近40°CA范围的气缸压力信号,经过归一化和主元素法降维处理后,得到一个由9个特征数构成的时间序列.一个Elman动态递归神经网络以该序列为输入,计算出燃烧相位CA50.以基于全可变气门机构的汽油HCCI发动机为对象,选取了台架试验中4个典型的HCCI动态变负荷过程数据,其中一个作为训练样本,另外3个作为测试样本.测试结果表明:该方法对HCCI动态过程的燃烧相位CA50预测误差小于0.25°CA;与BP网络和RBF网络相比,具有更低的误差和更强的泛化能力;与直接热力学计算方法相比,具有突出的抗干扰性和容错能力.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号