首页> 中文期刊> 《强度与环境》 >特征值重分析的广义伽略金法退化解

特征值重分析的广义伽略金法退化解

     

摘要

Reanalysis procedure of eigenvalue play an important part in many fields, for example, analysis of structural dynamic optimal design and extracting(or identifying) testing modal parameters of structure with reality-materials from modal testing data of the structure with pseudo-materials. For the latter the authors proposed a generalized Galerkin method that is based on the structural dynamic flexibility matrix. When it is considered as a technique of eigenvalue reanalysis, its property of “fast analysis” is not yet best. For this, a degenerated solution of the generalized Galerkin method under adopting Kirsch’s assumptions is obtained in this paper. Its property of “fast analysis” of the degenerated solution is very good. The numerical results show that accuracy of the present degenerated solution is also satisfactory. Thus it not only can be utilized in task of eigenvalue reanalysis, but also can be applied to extracting (or identifying) testing modal parameters of structure with reality-materials from modal testing data of the structure with pseudo-materials.%  特征值的重分析方法在许多技术领域,如结构的动态优化设计分析、利用虚材料结构的模态试验数据提取(辨识)真实材料结构的试验模态参数等工作中都占有重要地位。作者曾为虚材料结构的试验模态处理建立过一种基于动柔度的广义伽略金法和基向量组合法,这两种方法作为特征值重分析技术,其“快速性”还不够理想。为此,本文采用了 Kirsch 的假设,通过解的结构原理得到广义伽略金法的退化解,其“快速性”非常好。数值结果表明,该方法的精度也满意。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号