首页> 中文期刊> 《软件导刊》 >融合朴素贝叶斯与决策树的用户评论分类算法

融合朴素贝叶斯与决策树的用户评论分类算法

     

摘要

为了实现对用户评论的商业研究价值提取,解决互联网产品后续优化和增进服务问题,提出一种融合朴素贝叶斯与决策树的改进算法,处理文本中的噪声,避免零概率和属性值缺失的问题,从而提高分类准确率.该算法首先对用户评论数据作预处理,然后运用概率优化后的朴素贝叶斯处理空缺属性值,最后用决策树从积极和消极角度将数据进行分类.对微信公众号用户评论数据集进行实验,结果表明改进后的算法准确率达80.27%,比传统方法提高0.5%.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号