首页> 中文期刊> 《无线电工程》 >基于改进MAAC算法的多无人机自主路径规划

基于改进MAAC算法的多无人机自主路径规划

     

摘要

利用深度强化学习方法对威胁区域环境下多无人机(UAV)自主路径规划问题进行研究。为了解决强化学习算法中普遍存在难以收敛的问题,提出了一种改进的Actor-Attention-Critic for Multi-Agent Reinforcement Learning (MAAC)算法用于多UAV的自主路径规划。通过建立多UAV势场环境模型定义强化学习的马尔科夫决策过程(Markov Modulated Process, MDP),在动态环境中规划出合理的无碰撞路径。仿真实验验证了所设计的多UAV自主路径规划控制算法的有效性,并通过对比仿真验证了该算法在收敛速度和避免碰撞方面具有更优越的性能。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号