首页> 中文期刊> 《自动化仪表》 >基于特征选择实现多因素电力负荷预测

基于特征选择实现多因素电力负荷预测

     

摘要

负荷预测在保障电网安全运行和提高经济效益方面均占有举足轻重的地位。高精度的负荷预测不仅需要依靠历史负荷数据,并且气象、电价等诸多因素也会对其产生不同程度的影响。为了综合考虑诸多因素造成的影响。首先,以遴选关键因素作为切入点,利用新英格兰地区实测数据集,使用递归特征消除(RFE)有效去除冗余的影响因素,得到与真实负荷相关性高的影响因素,从而构造新的输入负荷数据。然后,利用注意力机制(Attention)动态调整各因素所占权重的特点,提出引入Attention的长短期记忆(LSTM)网络预测模型实现电力负荷预测。试验结果显示,与经典的K近邻方法(KNN)、LSTM、支持向量回归(SVR)等单一算法以及RFE-LSTM等组合算法相比,所提出的RFE-LSTM-Attention方法可以有效地提取关键负荷因素并获得良好的预测性能。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号