首页> 外文期刊>Knowledge-Based Systems >Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines
【24h】

Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines

机译:基于特征选择和最小二乘支持向量机的短期电力负荷预测

获取原文
获取原文并翻译 | 示例

摘要

Short-Term Electricity Load Forecasting (STLF) has become one of the hot topics of energy research as it plays a crucial role in electricity markets and power systems. Few researches aim at selecting optimal input features (Feature Selection, FS) when forecasting model is established, although more and more intelligent hybrid models are developed to forecast real-time electricity load. In fact, a good FS is a key factor that influence prediction accuracy. Based on the idea of selecting optimal input features, a hybrid model, AS-GCLSSVM, is developed to forecast electricity load in this research, which combines ACF (AutoCorrelation Function) and LSSVM (Least Squares Support Vector Machines). ACF is applied to select the informative input variables, and LSSVM is for prediction. The parameters in LSSVM are optimized by GWO (Grey Wolf Optimization Algorithm) and CV (Cross Validation). The proposed model is to forecast the half-hour electricity load of the following week. Experimental results show that it is an effective approach that can improve the forecasting accuracy remarkably, compared with the benchmark models.
机译:短期电力负荷预测(STLF)已成为能源研究的热门话题之一,因为它在电力市场和电力系统中起着至关重要的作用。建立预测模型时,很少有研究旨在选择最佳输入特征(功能选择,FS),尽管开发了越来越多的智能混合模型来预测实时电力负荷。实际上,良好的FS是影响预测准确性的关键因素。基于选择最佳输入特征的思想,本研究开发了一种混合模型AS-GCLSSVM来预测电力负荷,该模型结合了ACF(自相关函数)和LSSVM(最小二乘支持向量机)。 ACF用于选择信息性输入变量,而LSSVM用于预测。 LSSVM中的参数通过GWO(灰狼优化算法)和CV(交叉验证)进行了优化。提出的模型将预测下周的半小时用电。实验结果表明,与基准模型相比,它是一种可以显着提高预测精度的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号