首页> 中文期刊> 《模式识别与人工智能》 >基于模型似然的超1-依赖贝叶斯分类器集成方法

基于模型似然的超1-依赖贝叶斯分类器集成方法

     

摘要

平均1-依赖贝叶斯分类器(AODE)是一种重要的贝叶斯学习方法,但由于其平等看待各个超1-依赖贝叶斯分类器输出,可能对最终结果造成不好影响.本文将每个超1-依赖贝叶斯分类器看作一个产生式模型,并通过模型似然度量超1-依赖贝叶斯分类器的性能,进而提出基于模型似然的超1-依赖贝叶斯分类器集成方法(LODE).与AODE 相比,LODE 仅增加较少计算量却显著提高分类性能.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号