首页> 外文期刊>Computational Intelligence >A GENERIC ENSEMBLE APPROACH TO ESTIMATE MULTIDIMENSIONAL LIKELIHOOD IN BAYESIAN CLASSIFIER LEARNING
【24h】

A GENERIC ENSEMBLE APPROACH TO ESTIMATE MULTIDIMENSIONAL LIKELIHOOD IN BAYESIAN CLASSIFIER LEARNING

机译:贝叶斯分类器学习中多维似然估计的通用方法

获取原文
获取原文并翻译 | 示例

摘要

In Bayesian classifier learning, estimating the joint probability distribution p(x, y)or the likelihood p(x vertical bar y) directly from training data is considered to be difficult, especially in large multidimensional data sets. To circumvent this difficulty, existing Bayesian classifiers such as Naive Bayes, BayesNet, and A eta DE have focused on estimating simplified surrogates of p(x, y) from different forms of one-dimensional likelihoods.
机译:在贝叶斯分类器学习中,直接从训练数据中估计联合概率分布p(x,y)或似然性p(x垂直线y)被认为是困难的,尤其是在大型多维数据集中。为了避免这种困难,现有的贝叶斯分类器(如朴素贝叶斯,BayesNet和A eta DE)已集中精力从一维似然的不同形式估计p(x,y)的简化替代物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号