首页> 中文期刊> 《模式识别与人工智能》 >求解非光滑强凸优化问题的减小方差加权随机算法

求解非光滑强凸优化问题的减小方差加权随机算法

     

摘要

在光滑问题随机方法中使用减小方差策略,能够有效改善算法的收敛效果.文中同时引用加权平均和减小方差的思想,求解“L1 +L2 +Hinge”非光滑强凸优化问题,得到减小方差加权随机算法(α-HRMDVR-W).在每步迭代过程中使用减小方差策略,并且以加权平均的方式输出,证明其具有最优收敛速率,并且该收敛速率不依赖样本数目.与已有减小方差方法相比,α-HRMDVR-W每次迭代中只使用部分样本代替全部样本修正梯度.实验表明α-HRMDVR-W在减小方差的同时也节省CPU时间.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号