首页> 中文期刊> 《模式识别与人工智能》 >基于选择性集成旋转森林的人体行为识别算法

基于选择性集成旋转森林的人体行为识别算法

     

摘要

人体行为识别中的一个关键问题是如何表示高维的人体动作和构建精确稳定的人体分类模型.文中提出有效的基于混合特征的人体行为识别算法.该算法融合基于外观结构的人体重要关节点极坐标特征和基于光流的运动特征,可更有效获取视频序列中的运动信息,提高识别即时性.同时提出基于帧的选择性集成旋转森林分类模型(SERF),有效地将选择性集成策略融入到旋转森林基分类器的选择中,从而增加基分类器之间的差异性.实验表明SERF模型具有较高的分类精度和较强的鲁棒性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号