首页> 中文期刊> 《西安工程大学学报》 >基于稀疏编码字典学习的疵点检测

基于稀疏编码字典学习的疵点检测

     

摘要

为了快速准确地实现背景纹理复杂织物的疵点检测,改善传统算法计算量大的缺点,提出基于稀疏编码字典学习的疵点检测算法.首先利用Radon变化对图像进行倾斜矫正,减小像素信息处理误差,再使用Gabor滤波器对矫正后图像滤波,消除噪声影响.接着对预处理后的图像,以一定尺寸窗口,滑动选取图像块构建输入样本集,采用K-SVD算法对无瑕疵样本集合进行字典学习,得到稀疏系数并重构,进而取得水平、垂直投影特征矩阵.最后利用已得到的字典与稀疏系数对待检测样本重构,求得其相对应的特征矩阵,并用结构相似法最终确定疵点区域.实验表明,该算法检测时间短,效率较高,平均可达92.3%.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号