首页> 中文期刊> 《西安交通大学学报》 >采用运动传感器的人体运动识别深度模型

采用运动传感器的人体运动识别深度模型

     

摘要

针对传统机器学习方法在采用运动传感器数据的人体运动识别领域中识别效果严重依赖人工特征且准确率受限的问题,提出一种改进的卷积网络与双层长短期记忆网络的深层混合(VGG-LSTM)模型以实现特征自提取并进行运动识别.该模型结合传感器数据层状、时序的结构特点,将多维传感器数据类比于图像的RGB矩阵进行适应性处理;由一维串联卷积网络与双层长短期记忆网络复合而成.实验结果表明,在开源的人体运动识别(HAR)数据集和无线传感器信息控掘(WISDM)数据集上采用该模型的人体运动识别方法的平均准确率分别达到了97.17%和96.53%,该模型可以有效避免复杂的特征工程,在人体运动识别问题中具有很好的准确性和适应性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号