首页> 中文期刊> 《上海理工大学学报》 >融合BiLSTM的双图神经网络文本分类模型

融合BiLSTM的双图神经网络文本分类模型

     

摘要

采用图神经网络模型为整个语料库构建异构图处理文本分类任务时,存在难以泛化到新样本和词序信息缺失的问题。针对上述问题,提出了一种融合双图特征和上下文语义信息的文本分类模型。首先,为每个文本独立构建共现图和句法依存图,从而实现对新样本的归纳式学习,从双图角度捕获文本特征,解决忽略单词间依存关系的问题;其次,利用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)编码文本,解决忽略词序特征和难以捕捉上下文语义信息的问题;最后,融合双图特征,增强图神经网络模型的分类性能。在MR,Ohsumed,R8,R52数据集上的实验结果表明,相较于经典的文本分类模型,该模型能够提取更丰富的文本特征,在准确率上平均提高了2.17%,5.38%,0.61%,2.48%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号