首页> 中文期刊> 《探测与控制学报》 >基于粒子群算法优化的目标识别方法

基于粒子群算法优化的目标识别方法

     

摘要

误差反向传播算法(back-propagation简称BP算法)是当前前馈神经网络训练中应用最多的算法,其优化算法也层出不穷.针对LM优化算法存在局部极小点的问题,通过采用基于优化理论的粒子群优化算法(PSO)来改进Levenberg-Marquardt (LM)算法.将提取的目标瞬态特性特征作为各种算法的输入,通过matlab仿真,对整个样本进行训练,并随机选择小样本进行检验.结果表明,优化方法均合理可行,其收敛速度和预测精度有明显的提高,综合来讲,粒子群算法优化后的LM算法表现出较大的优越性,为利用目标的瞬态特性进行目标识别提供了一种新方法.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号