首页> 中文期刊> 《计算机应用》 >基于深度学习的无人机影像夜光藻赤潮提取方法

基于深度学习的无人机影像夜光藻赤潮提取方法

     

摘要

针对目前卫星遥感中夜光藻赤潮识别精度低、实时性差的问题,提出一种基于深度学习的无人机(UAV)影像夜光藻赤潮提取方法。首先,以UAV采集的高分辨率夜光藻赤潮RGB视频影像作为监测数据,在原有UNet++网络基础上,通过修改主干模型为VGG-16,并引入空间dropout策略,分别增强了特征提取能力并防止过拟合;然后,使用ImageNet数据集预先训练的VGG-16网络进行迁移学习,以提高网络收敛速度;最后,为评估所提方法的性能,在自建的赤潮数据集Redtide-DB上进行实验。所提方法的夜光藻赤潮提取总体精度(OA)为94.63%,F1评分为0.9552,Kappa为0.9496,优于K近邻(KNN)、支持向量机(SVM)和随机森林(RF)这3种机器学习方法及3种典型语义分割网络(PSPNet、SegNet和U-Net)。在模型泛化能力测试中,所提方法对不同拍摄设备和拍摄环境的夜光藻赤潮影像表现出一定泛化能力,OA为97.41%,F1评分为0.9659,Kappa为0.9382。实验结果表明,所提方法可以实现夜光藻赤潮自动化、高精度的提取,可为夜光藻赤潮监测和研究工作提供参考。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号