首页> 中文期刊> 《计算机辅助设计与图形学学报》 >卷积神经网络的宫颈细胞图像分类

卷积神经网络的宫颈细胞图像分类

     

摘要

为实现计算机辅助系统精准、快速地检测宫颈异常细胞,提出一种基于卷积神经网络的宫颈细胞自动分类方法.首先复制预训练网络结构及参数来初始化分类网络,将宫颈细胞图像分批次传入网络;然后采用Softmax函数将网络输出数据归一化为各标签对应的概率值,并使用交叉熵作为损失函数;最后改进网络结构加入对数据的批归一化处理,通过反向传播算法优化参数使损失函数最小化,最终选择训练所得最优网络.使用5折交叉验证法在Herlev数据集上的实验结果表明,对比Herlev常用基准方法,该方法的特异性、调和平均数和准确率分别提高了19.46%,10.71%和5.09%.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号