首页> 外文期刊>Neurocomputing >Accurate segmentation of overlapping cells in cervical cytology with deep convolutional neural networks
【24h】

Accurate segmentation of overlapping cells in cervical cytology with deep convolutional neural networks

机译:深度卷积神经网络准确分割宫颈细胞学中的重叠细胞

获取原文
获取原文并翻译 | 示例

摘要

Accurate cell segmentation is essential for computer-aided diagnosis of cervical precancerous lesions in cytology images. Automated segmentation poses a great challenge due to the presence of fuzzy and overlapping cells, noisy background, and poor cytoplasmic contrast. Deep learning diagnosis technology has showed its advantages in segmenting complex medical images. We present a new framework based on deep convolutional neural networks (DCNNs) to automatically segment overlapping cells in digital cytology. A double-window based cellular detection method is derived to correctly localize individual cells, in which TernausNet is adopted to classify the image pixels into nucleus, cytoplasm, or background. A modified DeepLab V2 model is applied to perform cytoplasm segmentation. To provide more training samples, a synthesis method is utilized to generate cell masses containing touching or overlapping cells. The presented method was tested on three independent data cohorts, including two public datasets. We achieved improved performance in terms of dice coefficient (DSC), false negative and false positive rates, with up to 15% improvement in DSC, compared with the state-of-the-art approaches. The results indicated that the DCNN based segmentation method could be useful in an image-based computerized analysis system for early detection of cervical cancer. (C) 2019 Elsevier B.V. All rights reserved.
机译:准确的细胞分割对于细胞学图像中宫颈癌前病变的计算机辅助诊断至关重要。由于存在模糊和重叠的细胞,嘈杂的背景以及不良的细胞质对比度,自动分割带来了巨大的挑战。深度学习诊断技术已显示出在分割复杂医学图像方面的优势。我们提出了一个基于深度卷积神经网络(DCNN)的新框架,以自动分割数字细胞学中的重叠细胞。推导了一种基于双窗口的细胞检测方法来正确定位单个细胞,在该方法中,采用TernausNet将图像像素分类为细胞核,细胞质或背景。修改后的DeepLab V2模型应用于细胞质分割。为了提供更多的训练样本,利用一种合成方法来生成包含触摸或重叠细胞的细胞团。所提出的方法在三个独立的数据队列中进行了测试,包括两个公共数据集。与最先进的方法相比,我们在骰子系数(DSC),误报率和误报率方面实现了更高的性能,DSC提升了15%。结果表明,基于DCNN的分割方法可能在基于图像的计算机分析系统中对宫颈癌的早期检测有用。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号