首页> 外文期刊>Neurocomputing >Integrating deep convolutional neural networks with marker-controlled watershed for overlapping nuclei segmentation in histopathology images
【24h】

Integrating deep convolutional neural networks with marker-controlled watershed for overlapping nuclei segmentation in histopathology images

机译:将深度卷积神经网络与标记控制的分水岭集成在一起,以进行组织病理学图像中的重叠核分割

获取原文
获取原文并翻译 | 示例

摘要

Nuclei segmentation in histopathology images plays a crucial role in the morphological quantitative analysis of tissue structure and has become a hot research topic. Though numerous efforts have been tried in this research area, the overlapping and touching nuclei segmentation remains a challenging problem. In this paper, we present a novel and effective instance segmentation method for tackling this challenge by integrating Deep Convolutional Neural Networks with Marker-controlled Watershed. Firstly, we design a novel network architecture with multiple segmentation tasks, called Deep Interval-Marker-Aware Network, for learning the foreground, marker, and interval of nuclei, simultaneously. Then the learned interval between overlapping nuclei is used to refine the foreground result of nuclei by using the logical operators. Finally, the learned marker result and the nuclei segmentation result refined by interval are transmitted into the Marker-controlled Watershed for splitting the touching nuclei. The experiments on the standard public datasets demonstrate that our method achieves a substantial improvement compared with state-of-the-art methods. Source codes are available at . https://github.com/appiek/Nuclei_Segmentation_Experiments_Demo. (C) 2019 Elsevier B.V. All rights reserved.
机译:组织病理学图像中的细胞核分割在组织结构的形态定量分析中起着至关重要的作用,已成为研究的热点。尽管在该研究领域已经尝试了许多努力,但是重叠和接触核分割仍然是一个具有挑战性的问题。在本文中,我们提出了一种新的有效的实例分割方法,通过将深度卷积神经网络与标记控制的分水岭相集成来应对这一挑战。首先,我们设计了一种具有多重分割任务的新型网络架构,称为深度间隔标记感知网络,用于同时学习核的前景,标记和区间。然后利用重叠的核之间的学习间隔,通过使用逻辑算子来细化核的前景结果。最后,将学习到的标记结果和按间隔精炼的核分割结果传输到标记控制的分水岭中,以分割接触核。在标准公共数据集上进行的实验表明,与最新方法相比,我们的方法取得了实质性的改进。源代码位于。 https://github.com/appiek/Nuclei_Segmentation_Experiments_Demo。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号