圆域q-Bézier曲线的降阶

     

摘要

圆域q-Bézier曲线是参数曲线的一种特殊表示形式,这种表示形式在很大程度上解决了CAD系统中浮点运算带来的不稳定性问题.为了用低阶圆域q-Bézier曲线逼近圆域q-Bézier曲线,提出圆域q-Bézier曲线的降阶算法.首先利用最佳一致逼近法构造原圆域q-Bézier曲线的中心曲线的降阶逼近,得到降阶后圆域q-Bézier曲线的中心曲线;然后用扰动法计算降阶后圆域q-Bézier曲线的半径;最后分析了降阶算法的边界误差.数值实例结果表明,该方法是有效的.%Diskq-Bézier curve is a special representation form of the parametric curve. Using this represen-tation, the problem of instability due to floating-point arithmetic in all state-of-the-art CAD systems can be largely solved. In this paper, to approximate diskq-Bézier curves with lower degree diskq-Bézier curves, the algorithms for degree reduction of diskq-Bézier curves are proposed. First of all, the degree reduction approximation to the center curves of the original diskq-Bézier curves are found using best uniform ap-proximation methods. The center curves of the degree reduced diskq-Bézier curves are obtained. Then the radius of the degree reduced diskq-Bézier curve is computed by using perturbation method. Finally, the bounding errors for the degree reduction algorithm are analyzed. Some numerical examples demonstrate the effectiveness of the proposed methods.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号