首页> 中文期刊> 《国际自动化与计算杂志》 >Double-layer Bayesian Classifier Ensembles Based on Frequent Itemsets

Double-layer Bayesian Classifier Ensembles Based on Frequent Itemsets

     

摘要

Numerous models have been proposed to reduce the classification error of Na¨ ve Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensemble learning is an effective method of reducing the classification error of the classifier, this paper proposes a double-layer Bayesian classifier ensembles (DLBCE) algorithm based on frequent itemsets. DLBCE constructs a double-layer Bayesian classifier (DLBC) for each frequent itemset the new instance contained and finally ensembles all the classifiers by assigning different weight to different classifier according to the conditional mutual information. The experimental results show that the proposed algorithm outperforms other outstanding algorithms.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号