首页> 中文期刊> 《智能计算机与应用》 >基于K-medoids聚类的贝叶斯集成算法

基于K-medoids聚类的贝叶斯集成算法

     

摘要

朴素贝叶斯分类算法由于其计算高效在生活中应用广泛。本文根据集成算法的差异性特征,聚类算法聚类点的选择方式的可变性,提出了基于K-medoids聚类技术的贝叶斯集成算法,朴素贝叶斯的泛化性能得到了提升。首先,通过样本集训练出多个朴素贝叶斯基分类器模型;然后,为了增大基分类器之间的差异性,利用K-medoids算法对基分类器在验证集上的预测结果进行聚类;最后,从每个聚类簇中选择泛化性能最佳的基分类器进行集成学习,最终结果由简单投票法得出。将该算法应用于UCI数据集,并与其他类似算法进行比较可得,本文提出的基于K-medoids聚类的贝叶斯集成算法(NBKME)提高了数据集的分类准确率。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号