首页> 中文期刊> 《智能计算机与应用》 >基于深度学习的区块链数据分片峰值聚类算法

基于深度学习的区块链数据分片峰值聚类算法

     

摘要

为了提高物联网区块链数据挖掘能力,需要进行数据优化聚类处理,提出基于深度学习的区块链数据分片峰值聚类算法。采用异构有向图分析方法进行物联网区块链数据存储结构设计,结合特征空间重组技术进行物联网区块链数据结构重组,提取物联网区块链数据的关联信息特征量,采用语义相关性融合的方法进行区块链数据特征提取和自适应调度,对提取的物联网区块链数据特征量进行模糊聚类处理,采用模糊C均值聚类方法进行物联网区块链数据的网格分片峰值聚类和属性分类识别,采用深度学习方法进行数据聚类过程中的分片峰值融合和聚类分析,实现区块链数据分片峰值聚类。仿真结果表明,采用该方法进行区块链数据分片峰值聚类的收敛性较好,误分率较低,自适应学习能力较强。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号