首页> 中文期刊> 《智能计算机与应用》 >油井动液面位置智能识别算法研究

油井动液面位置智能识别算法研究

     

摘要

针对采用声波探测法测得油井动液面数据时,采集到的信号由于受到长距离衰减和复杂背景噪声的影响,动液面回波位置容易淹没在复杂噪声之中不易识别的问题,本文采用一种新的带有宽第一层核的深度卷积神经网络(WDCNN)的方法.即使用采集到的原始声波信号作为输入,并使用第一卷积层中的宽内核来提取特征和抑制高频噪声;卷积层中的小卷积核用于多层非线性映射,池化层用来减少特征的空间大小和网络的参数;在输出层使用softmax函数转化识别的不同液面深度值.现场试验结果表明,构建的WDCNN模型提高了动液面位置识别的准确性与识别效率,智能识别技术取代了传统的耗时且不可靠的人工分析,降低了油田开采生产成本,提高了经济效益.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号