首页> 中文期刊> 《仪表技术与传感器》 >基于HPSO-RBF神经网络的瓦斯传感器故障诊断

基于HPSO-RBF神经网络的瓦斯传感器故障诊断

     

摘要

针对瓦斯传感器常见故障,提出一种混合粒子群优化(HPSO)算法与径向基函数(RBF)神经网络相结合的传感器故障诊断新方法.文中首先采用HPSO算法对RBF神经网络模型参数进行了优化,在详细分析瓦斯浓度影响因素的基础上,建立了瓦斯浓度非线性预测模型.然后将瓦斯浓度预测结果与实际测量值相比较得到残差,并分析残差的变化趋势,从而实现对瓦斯传感器的故障诊断.实验结果表明,HPSO-RBF模型具有较高的预测精度,能够有效地诊断瓦斯传感器的故障状态.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号