首页> 外文期刊>Neurocomputing >An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis
【24h】

An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis

机译:基于深度神经网络的智能故障诊断模型几次故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The most existing deep neural networks (DNN)-based methods for fault diagnosis only focus on prediction accuracy without considering the limitation of labeled sample size. In practical applications of DNNbased methods, it is time-consuming and costly to collect massive labeled samples. In this paper a task named few-shot fault diagnosis is defined as training model given small labeled samples in source domain and testing given small samples in target domain. We develop a novel intelligent fault diagnosis model for few-shot fault diagnosis which is using similarities of sample pairs to classify samples, rather than end-to-end classification. The proposed model contains modules of feature learning and metric learning. The module of feature learning has twin neural networks aiming to extract features from the sample pair. The module of metric learning is to predict similarity of the sample pair. The similarities of sample pairs combined the test sample with each labelled sample are utilized to complete the classification task. Label smoothing is utilized to further improve performance of classification. The performance of the proposed model is verified by two fault diagnosis cases which are bearing fault diagnosis cross different working conditions and cross bearing locations. The comparison studies with other models demonstrate the superiority of the proposed model. (c) 2021 Elsevier B.V. All rights reserved.
机译:最现有的深神经网络(DNN)基于故障诊断的方法仅关注预测准确性,而不考虑标记样本大小的限制。在DNNBASED方法的实际应用中,收集巨大标记样品的耗时且昂贵。在本文中,一项名为几次拍摄故障诊断的任务被定义为训练模型给出给定源域中的小标记样本并在目标域中的小样本进行测试。我们开发了一种新颖的智能故障诊断模型,用于几次出现故障诊断,该故障诊断是使用样本对的相似性来分类样本,而不是端到端分类。所提出的模型包含特征学习和度量学习的模块。特征学习模块具有双神经网络,旨在从样本对中提取特征。度量学习模块是预测样本对的相似性。样品对与每个标记的样品组合测试样品的相似性用于完成分类任务。标签平滑用于进一步提高分类性能。所提出的模型的性能由两个故障诊断情况进行验证,这些情况是轴承故障诊断交叉不同的工作条件和交叉轴承位置。与其他模型的比较研究展示了所提出的模型的优越性。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|550-562|共13页
  • 作者

    Wang Cunjun; Xu Zili;

  • 作者单位

    Xi An Jiao Tong Univ State Key Lab Strength & Vibrat Mech Struct Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ State Key Lab Strength & Vibrat Mech Struct Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep neural networks; Fault diagnosis; Few-shot learning; Label smoothing;

    机译:深度神经网络;故障诊断;少量学习;标记平滑;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号