首页> 中文期刊> 《计算机系统应用》 >课程推荐预测模型优化方案及数据离散化算法

课程推荐预测模型优化方案及数据离散化算法

     

摘要

本研究基于k-NN算法建立了课程推荐预测模型.由于原始样本数据的局部不均衡和数据叠交性,预测模型在不进行任何参数调整和数据优化的情况下,模型预测评分并不理想.针对上述问题,本研究设计了一套预测模型参数优化方案和样本数据优化方案,包括最优k值选择算法设计、距离公式优化、数据离散化算法设计.本研究提出的"数据离散化算法"驱使kd树的分类空间排序按照我们期望的特征向量的权重排序,该算法对提升模型预测评分起到了积极作用.上述优化方案和算法设计使课程推荐预测模型的评分从0.67提升到0.85,预测结果的准确度提高了27个百分点,学生对课程推荐的满意度得到显著提升.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号